接觸式掃描
接觸式三維掃描儀通過實(shí)際觸碰物體表面的方式計(jì)算深度,如座標(biāo)測(cè)量機(jī)即典型的接觸式三維掃描儀。此方法相當(dāng)精確,常被用于工程制造產(chǎn)業(yè),然而因其在掃描過程中必須接觸物體,待測(cè)物有遭到探針破壞損毀之可能,因此不適用于高價(jià)值對(duì)象如古文物、遺跡等的重建作業(yè)。此外,相較于其他方法接觸式掃描需要較長(zhǎng)的時(shí)間,現(xiàn)今最快的座標(biāo)測(cè)量機(jī)每秒能完成數(shù)百次測(cè)量,而光學(xué)技術(shù)如激光掃描儀運(yùn)作頻率則高達(dá)每秒一萬至五百萬次。非接觸主動(dòng)式掃描主動(dòng)式掃描是指將額外的能量投射至物體,借由能量的反射來計(jì)算三維空間信息。常見的投射能量有一般的可見光、高能光束、超音波與 X 射線。
時(shí)差測(cè)距
時(shí)差測(cè)距,或稱'飛時(shí)測(cè)距'的3D激光掃描儀是一種主動(dòng)式的掃描儀,其使用激光光探測(cè)目標(biāo)物。圖中的光達(dá)即是一款以時(shí)差測(cè)距為主要技術(shù)的激光測(cè)距儀。此激光測(cè)距儀確定儀器到目標(biāo)物表面距離的方式,是測(cè)定儀器所發(fā)出的激光脈沖往返一趟的時(shí)間換算而得。即儀器發(fā)射一個(gè)激光光脈沖,激光光打到物體表面后反射,再由儀器內(nèi)的探測(cè)器接收信號(hào),并記錄時(shí)間。由于光速 為一已知條件,光信號(hào)往返一趟的時(shí)間即可換算為信號(hào)所行走的距離,此距離又為儀器到物體表面距離的兩倍,故若令 為光信號(hào)往返一趟的時(shí)間,則光信號(hào)行走的距離等于。顯而易見的,時(shí)差測(cè)距式的3D激光掃描儀,其量測(cè)精度受到我們能多準(zhǔn)確地量測(cè)時(shí)間 ,因?yàn)榇蠹s 3.3 皮秒;微微秒)的時(shí)間,光信號(hào)就走了 1 公厘。
激光測(cè)距儀每發(fā)一個(gè)激光信號(hào)只能測(cè)量單一點(diǎn)到儀器的距離。因此,掃描儀若要掃描完整的視野(field of view),就必須使每個(gè)激光信號(hào)以不同的角度發(fā)射。而此款激光測(cè)距儀即可通過本身的水平旋轉(zhuǎn)或系統(tǒng)內(nèi)部的旋轉(zhuǎn)鏡(rotating mirrors)達(dá)成此目的。旋轉(zhuǎn)鏡由于較輕便、可快速環(huán)轉(zhuǎn)掃描、且精度較高,是較廣泛應(yīng)用的方式。典型時(shí)差測(cè)距式的激光掃描儀,每秒約可量測(cè)10,000到100,000個(gè)目標(biāo)點(diǎn)。
三角測(cè)距
三角測(cè)距3D激光掃描儀,也是屬于以激光光去偵測(cè)環(huán)境情的主動(dòng)式掃描儀。相對(duì)于飛時(shí)測(cè)距法,三角測(cè)距法3D激光掃描儀發(fā)射一道激光到待測(cè)物上,并利用攝影機(jī)查找待測(cè)物上的激光光點(diǎn)。隨著待測(cè)物(距離三角測(cè)距3D激光掃描儀)距離的不同,激光光點(diǎn)在攝影機(jī)畫面中的位置亦有所不同。這項(xiàng)技術(shù)之所以被稱為三角型測(cè)距法,是因?yàn)榧す夤恻c(diǎn)、攝影機(jī),與激光本身構(gòu)成一個(gè)三角形。在這個(gè)三角形中,激光與攝影機(jī)的距離、及激光在三角形中的角度,是我們已知的條件。通過攝影機(jī)畫面中激光光點(diǎn)的位置,我們可以決定出攝影機(jī)位于三角形中的角度。這三項(xiàng)條件可以決定出一個(gè)三角形,并可計(jì)算出待測(cè)物的距離。在很多案例中,人們以一線形激光條紋取代單一激光光點(diǎn),將激光條紋對(duì)待測(cè)物作掃描,大幅加速了整個(gè)測(cè)量的進(jìn)程。
手持激光掃描儀通過上述的三角形測(cè)距法建構(gòu)出3D圖形:通過手持式設(shè)備,對(duì)待測(cè)物發(fā)射出激光光點(diǎn)或線性激光光。 以兩個(gè)或兩個(gè)以上的偵測(cè)器(電耦組件 或 位置傳感組件)測(cè)量待測(cè)物的表面到手持激光產(chǎn)品的距離,通常還需要借助特定參考點(diǎn)-通常是具黏性、可反射的貼片-用來當(dāng)作掃描儀在空間中定位及校準(zhǔn)使用。這些掃描儀獲得的數(shù)據(jù),會(huì)被導(dǎo)入電腦中,并由軟件轉(zhuǎn)換成3D模型。手持式激光掃描儀,通常還會(huì)綜合被動(dòng)式掃描(可見光)獲得的數(shù)據(jù)(如待測(cè)物的結(jié)構(gòu)、色彩分布),建構(gòu)出更完整的待測(cè)物3D模型。
結(jié)構(gòu)光源
將一維或二維的圖像投影至被測(cè)物上,根據(jù)圖像的形變情形,判斷被測(cè)物的表面形狀,可以非??斓乃俣冗M(jìn)行掃描,相對(duì)于一次測(cè)量一點(diǎn)的探頭,此種方法可以一次測(cè)量多點(diǎn)或大片區(qū)域,故能用于動(dòng)態(tài)測(cè)量。
調(diào)變光
使用投影機(jī)將正弦波調(diào)變之光柵投射于書本上。調(diào)變光三維掃描儀在時(shí)間上連續(xù)性的調(diào)整光線的強(qiáng)弱,常用的調(diào)變方式是周期性的正弦波。借由觀察圖像每個(gè)像素的亮度變化與光的相位差,即可推算距離深度。調(diào)變光源可采用激光或投影機(jī),而激光光能達(dá)到極高之精確度,然而這種方法對(duì)于噪聲相當(dāng)敏感。
非接觸被動(dòng)式掃描
被動(dòng)式掃描儀本身并不發(fā)射任何輻射線(如激光),而是以測(cè)量由待測(cè)物表面反射周遭輻射線的方法,達(dá)到預(yù)期的效果。由于環(huán)境中的可見光輻射,是相當(dāng)容易取得并利用的,大部分這類型的掃描儀以偵測(cè)環(huán)境的可見光為主。但相對(duì)于可見光的其他輻射線,如紅外線,也是能被應(yīng)用于這項(xiàng)用途的。因?yàn)榇蟛糠智闆r下,被動(dòng)式掃描法并不需要規(guī)格太特殊的硬件支持,這類被動(dòng)式產(chǎn)品往往相當(dāng)便宜。
立體視覺法
傳統(tǒng)的立體成像系統(tǒng)使用兩個(gè)放在一起的攝影機(jī),平行注視待重建之物體。此方法在概念上,類似人類借由雙眼感知的圖像相疊推算深度(當(dāng)然實(shí)際上人腦對(duì)深度信息的感知?dú)v程復(fù)雜許多),若已知兩個(gè)攝影機(jī)的彼此間距與焦距長(zhǎng)度,而截取的左右兩張圖片又能成功疊合,則深度信息可迅速推得。此法須仰賴有效的圖片像素匹配分析,一般使用區(qū)塊比對(duì)或?qū)O幾何算法達(dá)成。使用兩個(gè)攝影機(jī)的立體視覺法又稱做雙眼視覺法,另有三眼視覺與其他使用更多攝影機(jī)的延伸方法。
色度成形法
早期由 B.K.P. Horn 等學(xué)者提出,使用圖像像素的亮度值代入預(yù)先設(shè)計(jì)之色度模型中求解,方程式之解即深度信息。由于方程組中的未知數(shù)多過限制條件,因此須借由更多假設(shè)條件縮小解集之范圍。例如加入表面可微分性質(zhì)、曲率限制、光滑程度以及更多限制來求得精確的解。此法之后由 Woodham 派生出立體光學(xué)法。
立體光學(xué)法
為了彌補(bǔ)光度成形法中單張照片提供之信息不足,立體光學(xué)法采用一個(gè)相機(jī)拍攝多張照片,這些照片的拍攝角度是相同的,其中的差別是光線的照明條件。最簡(jiǎn)單的立體光學(xué)法使用三盞光源,從三個(gè)不同的方向照射待測(cè)物,每次僅打開一盞光源。拍攝完成后,再綜合三張照片并使用光學(xué)中的完美漫射模型解出物體表面的梯度矢量,經(jīng)過矢量場(chǎng)的積分后即可得到三維模型。此法并不適用于光滑而不近似于朗伯表面的物體。
輪廓法
此類方法是使用一系列物體的輪廓線條構(gòu)成三維形體。當(dāng)物體的部分表面無法在輪廓聯(lián)機(jī)展現(xiàn)時(shí),重建后將丟失三維信息。常見的方式是將待測(cè)物放置于電動(dòng)轉(zhuǎn)盤上,每次旋轉(zhuǎn)一小角度后拍攝其圖像,再經(jīng)由圖像處理技巧去除背景并取出輪廓線條,搜集各角度之輪廓線后即可“刻劃”成三維模型。
用戶輔助
另外有些方法在重建過程中需要用戶提供信息,借助人類視覺系統(tǒng)之獨(dú)特性能,輔助完成重建程序。這些方式都是基于照片攝影原理,針對(duì)同個(gè)物體拍攝圖像以推算三維信息。另一種類似的方式是全景重建,乃是在定點(diǎn)上拍攝四周圖像使之得以重建場(chǎng)景環(huán)境。